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Modeling sonoluminescence
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In single-bubble sonoluminescence, a bubble trapped by a sound wave in a flask of liquid is forced to expand
and contract; exactly once per cycle, the bubble emits a very sharp~,50 ps! pulse of visible light. This is a
robust phenomenon observable to the naked eye, yet the mechanism whereby the light is produced is not well
understood. One model that has been proposed is that the light is ‘‘vacuum radiation’’ generated by the
coupling of the electromagnetic fields to the surface of the bubble. In this paper, we simulate vacuum radiation
by solving Maxwell’s equations with an additional term that couples the field to the bubble’s motion. We show
that, in the static case originally considered by Casimir@Proc. K. Ned. Akad. Nel.51, 783 ~1948!#, we
reproduce Casimir’s result. In a simple purely time-dependent example, we find that an instability occurs and
the pulse of radiation grows exponentially. In the more realistic case of spherically symmetric bubble motion,
we again find exponential growth in the context of a small-radius approximation.@S1063-651X~99!08803-0#

PACS number~s!: 78.60.Mq, 03.50.2z, 03.70.1k, 03.50.De
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I. INTRODUCTION

Single-bubble sonoluminescence@1# is a mysterious phe
nomenon. A small bubble of gas, usually air, is trapped at
center of a flask of liquid, usually water, by the applicati
of an intense acoustic field. The frequency of the field
typically 25 or 30 kHz, and, once per cycle, driven by t
sound field, the bubble undergoes expansion and then r
contraction. If the parameters are right@2# ~here ‘‘param-
eters’’ refers to such things as the intensity of the sou
field, the concentration of the gas, the chemical composi
of the gas, or the temperature of the water! the bubble will
emit a very narrow pulse of light during the contractio
phase of the cycle. The sound wave, with a time scale of
of microseconds, produces a contraction of the bubble m
sured in tens of nanoseconds, which in turn somehow ge
ates a pulse of visible light whose duration has recently b
measured to be tens of picoseconds@3#. Furthermore, even
though the motion of the bubble is quite violent, if the p
rameters are right it can be remarkably stable, repeating i
over millions of cycles, with the flash of light appearing
the same point in the cycle each time@4#.

Other aspects of the phenomenology of sonoluminesce
are also worthy of note. For example, the spectrum of em
ted light is only partially known, because the water abso
all wavelengths shorter than about 180 nm@5#. The part that
is observed looks like the tail of a rising distribution, an
attempts to fit it to a thermal spectrum have led to the spe
lation that the emitting region is very hot, certainly in exce
of 25 000 K, and perhaps even as high as a million degr
at which point nuclear fusion might be expected to be s
nificant @6#.

Another peculiarity is the fact that, whereas air-fille
bubbles work well as a vehicle for sonoluminescen
bubbles filled with either oxygen or nitrogen, or indeed w
a suitable mixture of these two gases, do not@7#. The small
noble-gas component of air is essential for signific
sonoluminescence to take place. This agrees with the sug
tion that, during the first second or so of the bubble’s os
lation, the oxygen and nitrogen are ionized and absorbed
PRE 591063-651X/99/59~3!/3001~7!/$15.00
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the water, leaving a rarefied bubble filled with noble gas@8#.
Experiments done with bubbles filled with various nob
gases confirm that they produce sonoluminescence
ciently.

There is much more to the phenomenology of sonolu
nescence, as described in a number of recent reviews@9#.
Sonoluminescence is a complex phenomenon, involving a
does the motion of the bubble, the dynamics of the gas ins
the bubble, and the mechanism that produces the flas
light. Our main concern in this work will be the last of thes
The literature contains two classes of models to explain
flash of light. One involves the gas inside the bubble in
essential way@10#. There is no doubt that the gas undergo
compression and heating during the contraction phase of
bubble’s motion, and this type of explanation relies on eith
thermal radiation, or else bremmstrahlung, to produce
light.

The second type of explanation, on which we shall foc
is that the observed light is due to ‘‘vacuum radiation’’@11–
15#, which is a dynamical counterpart to the well-know
Casimir effect. In this view, given a particular motion of th
bubble,

r 5R~ t ! ~1!

@here r is the radial coordinate that describes the bubbl
surface, andR(t) is a prescribed function of time; we assum
a spherical bubble centered at the origin for simplicity#, the
radiation would take place even if the bubble were co
pletely evacuated. The role of the gas, and in particular
special role that seems to be played by the noble gase
merely to modulate the motion of the bubble, i.e., to give r
to a specificR(t). It is then the motion of the boundary tha
directly gives rise to the radiation.

To explore this idea, our approach will be to take as giv
all of the physics associated with the motion of the bub
and the dynamics of the gas, and to extract therefrom
single function R(t) which represents the experimental
measured bubble motion. Our next task is to construc
model in which the electromagnetic field is coupled to t
bubble surface atr 5R(t).
3001 ©1999 The American Physical Society
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3002 PRE 59ALAN CHODOS AND SARAH GROFF
One approach would be to attempt to derive this coupl
from an examination of the dielectric properties of water;
practice, this would mean simply endowing the water with
dielectric constante, and letting

e~xW ,t !5eu„r 2R~ t !…1u„R~ t !2r ….

Considerable attention in the literature has been devo
to the case ofR(t)5const, which, although it obviously ne
glects the dynamical mechanism that turns Casimir ene
into real photons, is supposed to provide an order of ma
tude estimate of the energy available, which can then
compared to the energy that is produced in sonolumin
cence. The question of whether the Casimir energy is su
cient in this respect has become a rather controversial
@18#. Attempts to treat this problem dynamically have led
interesting results, but have not fully resolved the iss
@12,13,14,19#.

In this work, we shall choose a coupling that is not der
able~at least by us! from a direct consideration of the unde
lying physics. Rather, the interaction is chosen both for
simplicity, and because it naturally leads to a coupling loc
ized on the boundaryr 5R(t). In addition, as we shall show
below, when one considers the case of two static para
plates ~Casimir’s original problem! one recovers precisel
the original Casimir energy, and is therefore encourage
hope that the model may be a valid representation of
dynamical situation as well.

In Sec. II we shall introduce the model, and derive t
boundary conditions onEW andBW that it implies. In Sec. III,
we look at two instructive cases that are not directly rela
to sonoluminescence: the case of static, parallel plates m
tioned above, and the case of a strictly time-depend
source, with no spatial dependence. In this latter case,
shall discover the existence of unstable modes that can
to production of radiation at unexpectedly large rates.

In Sec. IV, we tackle the case of greatest interest,
collapsing bubble. Even classically, we are unable to so
the equations exactly, but we develop an approximat
scheme that relies on the fact that the radius of the bubb
small, in the sense thatR(t)!cT, whereT is a time charac-
teristic of the width of the sonoluminescent pulse. In th
approximation we find the same sort of unstable modes
existed in the purely time-dependent case. Section V is
voted to conclusions, and we have also included an appe
in which further properties of theFF̃ interaction term are
discussed.

II. MODEL

We consider the following Lagrange density@16#:

L52 1
4 @FmnFmn1 f ~x!FmnF̃mn#. ~2!

Here Fmn has its usual meaningFmn5]mAn2]nAm , where
Am is the four-vector electromagnetic potential, andF̃mn

5(1/2)emnrsFrs, whereemnrs is the totally antisymmetric
symbol on four indices, ande012351.

As is well known,FmnF̃mn is a total divergence

FmnF̃mn5]m@2emnrsAn]rAs#, ~3!
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so up to a surface termL can be written

L52 1
4 @FmnFmn22~]m f !emnrsAn]rAs#. ~4!

Hence by choosing

f ~x!5 f 0u@g~x!#, ~5!

we obtain]m f 5 f 0]mgd(g), so the second term inL repre-
sents the coupling of the electromagnetic field to the surf
given byg(x)50. (f 0 is a dimensionless constant.! For the
case of the sonoluminescing bubble, we would cho
g(xW ,t)5r 2R(t).

The equations of motion that follow fromL are

]m@Fmn1 f ~x!F̃mn#50, ~6!

or, since]mF̃mn50 identically,

]mFmn1~]m f !F̃mn50. ~7!

If we defineEW andBW in the usual way, we obtain the mod
fied Maxwell equations

¹W •EW 1¹W f •BW 50, ~8!

¹W 3BW 2EW 2 ḟ BW 2¹W f 3EW 50 ~9!

together with¹W •BW 50 and¹W 3EW 1ḂW 50. With choice~5!,
we have ḟ 5 f 0n0d(g) and ¹W f 5 f 0nW d(g), where nm

5(ġ,¹W g) is the 4-normal to the surface. To see what the
equations entail, we write

EW 5EW 1u~g!1EW 2u~2g!, ~10a!

BW 5BW 1u~g!1BW 2u~2g!, ~10b!

and substituting into Eqs.~8! and ~9!, we find that the pair
(EW 1 ,BW 1) satisfy the free Maxwell equations forg.0, and
likewise (EW 2 ,BW 2) satisfy them forg,0. At g50, we have
the boundary conditions

nW •~EW 12EW 2!1 f 0nW •BW 50, ~11!

nW 3~BW 12BW 2!2n0~EW 12EW 2!2 f 0~n0BW 1nW 3EW !50, ~12!

nW •~BW 12BW 2!50, ~13!

nW 3~EW 12EW 2!1n0~BW 12BW 2!50. ~14!

Notice that the second pair of equations~13! and ~14! re-
moves the ambiguity as to which values ofBW andEW to use in
the terms proportional tof 0 in the first pair of equations~11!
and ~12!.

III. SPECIAL CASES

A. Parallel plates

Before dealing with the time-dependent case, let us
plore the physical significance of our model by revisiting t
case originally considered by Casimir@17#, i.e., two infinite
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PRE 59 3003MODELING SONOLUMINESCENCE
parallel planes separated by a distancea. We take g(xW )
5z(z2a). The planes divide space into three regionsz
,0, 0,z,a andz.a, and in each region we can choose
plane-wave solution to Maxwell’s equations,

EW 5e2 ivt@eWeikW•xW1eW8eikW8•xW#, ~15!

wherekW5(k1 ,k2 ,k3) andkW85(k1 ,k2 ,2k3) and

BW 5e2 ivt@bW eikW•xW1bW 8eikW8•xW#. ~16!

We need bothkW andkW8 because the boundary conditions w
mix them.

Maxwell’s equations imply that

kW3bW 52veW , kW3eW5vbW ~17!

and

kW83bW 852veW8, kW83eW85vbW 8, ~18!

in each of the three regions, which in turn imply thatv2

5kW25kW82.
It is now a matter of implementing the boundary con

tions atz50 and atz5a. After some algebra, it is not har
to show that the content of these conditions reduces to

z50: b31b3850, ~19!

z5a: b3eik3a1b38e
2 ik3a50 ~20!

~here b3 means the third component ofbW in the region 0
,z,a, and similarly forb38) from which it follows that

k3a5np, n50,61,62,... . ~21!

This is exactly the same spectrum used by Casimir in
original paper, and therefore the Casimir energydE will be
the same as his result

dE

L2 52
p2

720a3 , ~22!

whereL2 is the area of one of the plates.

B. Time dependent source

Armed with the knowledge that our model reproduces
static Casimir energy, we now proceed to another sim
example, which is very different physically: we takef (xW ,t)
to depend only ont:

f ~x,t !50, t<0

5gt, 0,t,T

5gT, t>T. ~23!

Sincef is not a step function, there is no bubble in this ca
Rather, the source is turned on everywhere at once att50,
and is turned off again att5T ( f 5const, is without physica
consequence, becauseFmnFW mn is a total divergence!.
is

e
le

.

The equations of motion in this case are of course just
free Maxwell equations fort,0 and t.T, whereas for 0
,t,T, one of the Maxwell equations is modified:

¹W 3BW 2ĖW 5gBW . ~24!

One can now study a plane-wave solution, propagating,
along thez axis. Fort,0 we write

BW 5~a x̂1bŷ!ei ~kz2vt !,
~25!

EW 5~bx̂2aŷ!ei ~kz2vt !,

with k25v2. At t50, this will be matched to a solution o
the form

BW 5eikz@e2 iVt~a x̂1b ŷ!1eiVt~g x̂1d ŷ!#,
~26!

EW 5eikz@e2 iVt~b x̂2a ŷ!1eiVt~d x̂2g ŷ!#,

where, because of the modification to Maxwell’s equatio
one hasV25V6

2 5@k(k6g)#.
Corresponding to each of these solutions is a particu

polarizationĈ651/&@ x̂7 i ŷ #. When matched to thet,0
solution, the expression forBW , 0,t,T, becomes

e2 ikzBW 5S k1V1

2V1
D a1 ib

&
Ĉ1e2 iV1t

2S k2V1

2V1
D a1 ib

&
Ĉ1eiV1t

1S k1V2

2V2
D a2 ib

&
Ĉ2e2 iV2t

2S k2V2

2V2
D a2 ib

&
Ĉ2eiV2t, ~27!

with a similar expression forEW .
One can extend this analysis by matching this solution

a suitable expression forEW andBW in the regiont.T, where
of coursev25k2 again. But we shall not need this extensio
in what follows.

The feature most worthy of note is that~for g.0) the
frequencyV2 becomes imaginary whenk,g. ~If g,0, then
V1 becomes imaginary.! HenceEW andBW grow exponentially
with time over the interval 0,t,T. We shall see below that
at least in a certain approximation, this feature persists in
case of a spherically oscillating bubble.

To quantize this model, we can expressEW andBW in terms
of a vector potentialAW , and endow the Fourier coefficients o
AW with the appropriate commutation relations. Effective
this means that the coefficientsa andb in the above expres
sions become quantum operators. We must also gener
our solution to the case of a plane wave propagating in
arbitrary direction, but this is easily done since thez axis
used above was in no way special. It is of interest to comp
the rate of energy production per unit volume by the exter
source. We do this by forming the Hamiltonian density
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3004 PRE 59ALAN CHODOS AND SARAH GROFF
H5 1
2 ~EW •EW 1BW •BW !, ~28!

and taking the vacuum expectation value of its time deri
tive. H is normal ordered, so that̂0uHu0&50 for t,0.
Since the expressions are quite lengthy, we simplify mat
by retaining only those pieces which grow exponentia
After some calculation, we then find

d

dt
^0uHu0&exp5u~ t !u~T2t !

g5

16p2

3E
0

1 x5/2

~12x!1/2e2gtAx~12x!dx, ~29!

where the notation exp on the matrix element means
exponentially growing piece. A simple stationary-phase e
mate of the integral gives

d

dt
^0uHu0&exp.u~ t !u~T2t !

g5

64p2 egt. ~30!

We can try to connect this to sonoluminescence~despite the
fact that there is no bubble! by choosingT510211sec~the
duration of a typical pulse! and 1/g5231027 m ~the cutoff
on the observed spectrum!. We then findgT51.63104,
which, needless to say, produces a huge number when
serted into the exponent in Eq.~30!.

At this point, we can simply argue that our model is t
far removed from the phenomenology of sonoluminscenc
be expected to give reasonable results. Later, however
shall have to deal with this question in the context of a m
realistic model, to which we now turn.

IV. COLLAPSING BUBBLE

We takef (x)5 f 0u„r 2R(t)…. Our strategy will be to at-
tempt to solve the classical problem, looking for the kind
exponential behavior in time that we found in the previo
example. If this is indeed found, then, reasoning by anal
with the previous example, we will argue that, when qua
tized, the model will produce an exponentially growing pu
of vacuum radiation over some period of time.

Because of the spherical symmetry, it is appropriate
expandEW andBW in terms of vector spherical harmonics. Di
ferent values ofl and m will not couple to each other. We
write

EW 5e1LW Ylm1~re281e2!¹W Ylm1
l ~ l 11!

r 2 e2rWYlm ~31!

and

BW 5b1LW Ylm1~rb281b2!¹W Ylm1
l ~ l 11!

r 2 b2rWYlm . ~32!

Here LW 5(1/i )rW3¹W , and thee’s and b’s are functions ofr
and t; we cannot separate variables any further because
boundary conditions will mixr and t.

These forms automatically satisfy¹W •EW 5¹W •BW 50. The
rest of Maxwell’s equations imply that
-

rs
.

e
i-

in-

to
e

e

f
s
y
-

o

he
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l ~ l 11!

r 2 w50, ~33!

wherew is any of thee’s or b’s, and furthermore that

e15 i ḃ2 and b152 i ė2 . ~34!

In these equations, a prime is]/]r , and an overdot is]/]t.
So if we cast the boundary conditions entirely in terms ofb2
ande2 , we can recovere1 andb1 from Eq. ~34!.

In fact it is not hard to express the boundary conditions
terms ofe2 andb2 . We expandEW andBW as in Eqs.~31! and
~32! separately inside and outside the bubble, and we
Dw5wout2w in , where once againw is any of thee’s or b’s.
Then we find, atr 5R(t),

Db350, ~35!

De252 f 0b2 , ~36!

Dḃ25
2 f 0Ṙ

12Ṙ2
Fe2

R
1e281Ṙė2G , ~37!

and

Dė25
2 f 0

12Ṙ2
FRb2

R
1ḃ21Ṙb28G . ~38!

One can show that the expressions on the right-hand sid
these equations all have zero discontinuity atr 5R(t), so
there is no ambiguity as to which values to insert.

For simplicity, we choose to analyze the casel 51. Then
the most general solutions to Eq.~33!, for b2 ande2 , are

b2
out5

]

]r F1

r
„b̃~ t1r !2b̂~ t2r !…G ,

b2
in5

]

]r F1

r
„b~ t1r !2b~ t2r !…G ,

~39!

e2
out5

]

]r F1

r
„g̃~ t1r !2ĝ~ t2r !…G ,

e2
in5

]

]r F1

r
„g~ t1r !2g~ t2r !…G .

Here theb’s andg’s are arbitrary functions of the indicate
arguments. In writing these equations, we have imposed
requirement thatb2 ande2 be regular atr 50. The functions
b̃ and g̃ determine the waves propagating inward from
finity, and should be taken as initial data. In principle,
should be possible to use the boundary conditions,@Eqs.
~35!–~38!# to determine the inside solution, specified byb

and g, and the outgoing waves specified byb̂ and ĝ. The
effect we are looking for is to see whether nonexponentia
growing incoming datab̃ and g̃ can generate exponentia
growth in the outgoing solutionb̂ and ĝ.

Unfortunately, when we substitute forms~39! into the
boundary conditions, we find rather complicated function
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PRE 59 3005MODELING SONOLUMINESCENCE
difference equations that we do not know how to solve.
stead we rely on an approximation that is based on the
lowing observation. Phenomenologically, the smallest ti
scale we are interested in is the width of the sonolumines
pulse,Dtmin>10211sec. The largest length scale we are
terested in is the maximum size of the bubble,Rmax
>1024 m. But, in units withc51,

Rmax

Dtmin
5107 m/sec5

1

30
~40!

~this is actually a generous overestimate, since sonolumi
cence occurs when the bubble radius is at least an orde
magnitude smaller thanRmax). Thus it might make sense t
regardR(t) as a small parameter, and to expand our eq
tions accordingly. We do this as follows: in the expressio
for b2 and e2 @Eq. ~39!# we replace the argumentst6r by
t6er , where e is a bookkeeping parameter in which w
perform a systematic expansion. At the end, we sete51.

To obtain a consistent expansion, we not only expand
arguments of the functions, we must also expand the fu
tions themselves:

w~ t !5w0~ t !1ew1~ t !1e2w2~ t !1..., ~41!

wherew stands for any of the unknownsb̂, ĝ, b, andg. The
input functionsb̃ and g̃ are regarded as known, and so a
not expanded. The advantage of this expansion procedu
that we thereby obtain relations among functions all of wh
are evaluated at the same argumentt. Henceforth we denote
d/dt by a prime.

To obtain nontrivial results, we must retain terms up
order e3. For convenience, we introduce the notationr1(t)
5b0-(t) andr2(t)5g0-(t). We find

b̂05b̃, ĝ05g̃,

b̂15b̂25ĝ15ĝ250,
~42!

b̂35 2
3 R3@r12b̃-#,

ĝ35 2
3 R3@r22g̃-2 f 0r1#

and

r15b̃-2
1

3 S f 0

12Ṙ2D @2r21RṘr28#,

~43!

r25g̃-2
1

3 S f 0

12Ṙ2D @~123Ṙ2!r11RṘr18#.

The functions whose behavior we want to study areb̂3 and
ĝ3 , which give the first nontrivial corrections to the outgoin
wavesb̂ andĝ. Our strategy will be to solve Eq.~43! for r1

and r2 , and then evaluateb̂3 and ĝ3 from Eq. ~42!. If we
make the further approximationṘ2!1, which must surely be
true for any realistic bubble motion, we can drop theṘ2

terms on the right hand side of Eq.~43!, which can then be
rewritten as
-
l-
e
nt
-

s-
of

a-
s

e
c-

is
h

2 f 0RṘ

3 S r18

r28
D 5M S r1

r2
D1S g̃-

b̃-D , ~44!

whereM is the matrix (
21
(1/3)f 0

(22/3)f 0

21 ). The eigenvalues ofM

are

l65 1
2 @6Af 0

2142 1
3 f 0#. ~45!

Note thatl1.0, l2,0. Let u be the orthogonal matrix

u5
1

&
Fk1

k2

2k2

k1
G , ~46!

where k65@16 f 0 /Af 0
214#1/2. Then, setting (s2

s1)5u(r2

r1),

our equation becomes

2 f 0RṘ

3 S s18

s28
D 5S l1

l2

s1

s2
D1S k1

k2
D , ~47!

where (k2

k1)5u( b̃-
g̃-). Thus we have to solve

2 f 0RṘ

3
s85ls1k, ~48!

whose solution is

s~ t !5expF2E
t0

t

dt8
3l

f 0RṘ
G

3F2E
t0

t

dt8 expH E
t0

t8
dt9

3l

f 0RṘ
J S 3k

f 0RṘ
D 1s~ t0!G .

~49!

There are two such solutions, one forl1 and one forl2 .
Generally, the exponential behavior that is manifest on
right hand side of Eq.~49! will cancel in the first term, but
will survive in the term proportional tos(t0). Because in the
region of interest we haveRṘ,0, it will be l1 that gives the
exponentially growing behavior~for f 0.0).

How do we interpret this result? First, we must recogn
that the approximation we have made is potentially very d
gerous, because the highest derivative in Eq.~48! is multi-
plied by a factor2 f 0RṘ/3, which we expect to be quite
small, and indeed which we expect to go to zero forutu large.
@Here we are restricting ourselves to only one cycle of
bubble’s motion, so we takeR(t)→const asutu→`.# As a
consequence, it appears from the solution that the expo
tial behavior becomes more pronounced the smallerRṘ be-
comes, whereas we know from the original equation~48!

that for RṘ strictly zero the solution is justs52(1/l)k,
which exhibits no exponential behavior at all.

Our response to this is to imagine that foru f 0RṘu below
some threshold value, it is indeed negligible, and theref
s52(1/l)k. At some timet0 ,u f 0RṘu crosses the threshold
and solution~49! kicks in. We therefore fix the arbitrary
constants(t0) to be2(1/l)k(t0). As we have already ob
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served, for one of the two choices ofl, s will be an expo-
nentially growing function@except for the unlikely possibil-
ity that k(t0)50#.

The good news is that, within the context of our appro
mation, we have found the exponential behavior that we
looking for. The bad news is that, just as in the earlier, s
pler example, we have an embarrassment of riches. T
appears to be no mechanism within the model for turning
exponential behavior off—we have already fixed the one f
parameters(t0). Let us assume that there is a dissipat
mechanism, having to do with the properties of the gas ins
the bubble or the liquid outside it, that we should add to o
model. This will abort the vacuum radiation after some ch
acteristic time. Because the exponential growth produce
much radiation, we must assume that the abortion takes p
after only about a femtosecond. In this picture, therefore,
observed pulse really consists of an exceedingly rapid ex
nential rise of duration a femtosecond or so, followed b
relatively slow fall lasting tens of picoseconds, for which t
dissipative mechanism is responsible.

V. CONCLUSIONS

It has been argued in the literature that vacuum radia
cannot be the source of sonoluminescence because the
Casimir energy is so small. Without entering into the cont
versy over how large the static Casimir energy is for
spherical bubble@18#, we believe that, as illustrated by ou
model ~which, after all, correctly reproduces the static C
simir energy in the case of parallel plates! there are two
additional factors that ought to be taken into account:~1! The
Casimir effect arises essentially from the coupling of t
electromagnetic field to a boundary. When that boundar
moving, the field is coupled to a time-dependent sour
which in and of itself leads to the production of energy.~2! If
this time-dependent coupling gives rise to unstable mode
it does in our model, then an unexpectedly large amoun
energy can be produced.

The present work raises a number of issues for furt
investigation. Perhaps most important is tightening up
approximate treatment we have given for the classical s
tions in the case of the collapsing bubble. It would be pr
erable to have a method of analysis that would conclusiv
demonstrate whether the period of exponential growth ex
and whether the model contains not only a mechanism
turning on the pulse but also for turning it off. Failing that,
will probably be necessary to include additional physics h
ing to do with the kind of dissipation mechanism discuss
above, capable of damping the vacuum radiation to a le
compatible with what is seen experimentally. If this is t
case, then the shape of the sonoluminescent pulse sh
exhibit a very rapid rise followed by a much slower deca

Within the context of the expansion employed in this p
per, as might be expected one finds that the higher orde
e become progressively more complicated. We have ex
ined the next nontrivial term, which ise5, and we have veri-
fied that it does not qualitatively change the exponential
havior found in ordere3. We have not checked, howeve
that thee5 contribution is numerically small compared to th
e3 contribution.

It would also be useful to quantize the electromagne
field in the presence of the collapsing bubble, much as
-
re
-
re
e
e

e
r
-
so
ce
e
o-
a

n
atic
-

-

is
,

as
of

r
e
u-
-
ly
s,
r
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d
el

uld
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in
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c
e

did for the simpler purely time-dependent case. We belie
that any exponential behavior in the classical system w
persist in its quantum counterpart, but having the expl
expression for quantum vacuum radiation would allow o
to compare the details of the photon spectrum with exp
ment. It would also be useful, for numerical work, to have
good analytical approximation toR(t).

Ultimately, electromagnetic radiation can be produc
only by charges in motion. In the case of sonoluminescen
whether those charges effectively reside at the boundar
the bubble, as we contend in this paper, or within the
inside the bubble, is a question that still awaits definiti
resolution.
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APPENDIX: MORE ABOUT FF̃

In this appendix we add a few remarks about the prop
ties ofFF̃. The f (x)FF̃ interaction analyzed in the text wa
chosen as the most convenient form for coupling the elec
magnetic field to the bubble boundary. Whether it correc
captures the essential physics of this coupling is a matter
will require further investigation.

Another way of writingFF̃ is just 2EW •BW . It is, apart from
the familiarFmnFmn51/2(BW 22EW 2), the only Lorentz invari-
ant that can be constructed fromEW and BW by algebraic
means. A term in the Lagrangian of the formuFmnF̃mn, with
u constant, has no physical consequence in an Abelian ga
theory such as electrodynamics, because, as noted in Eq~3!,
it is a total divergence. In a non-Abelian theory~such as
quantum chromodynamics or the electroweak theory! this
term is still a divergence, but it nevertheless gives rise
nonperturbative physical effects because of the nontrivial
pological structures, called instantons, that exist in su
theories.

The anomalous divergence of theU(1) axial vector cur-
rent is proportional toFF̃. This term is directly responsible
for the decay of thep0 meson into twog rays, which is its
dominant decay mode.

In string theory, because of a property calledS duality
@20,21#, two seemingly different theories can in fact b
equivalent. This can be very useful because often one of
two theories is strongly coupled~and therefore intractable!
whereas the other is weakly coupled. As it turns out,
system we have been studying in connection with sonolu
nescence exhibits a simple form ofSduality. To see this, it is
useful to consider a slightly more general Lagrangian:

L52 1
4 @w1~x!FmnFmn1w2~x!FmnF̃mn#. ~A1!

In the text we hadw151 and w25 f (x). In string theory,
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w1(x) would be related to the dilaton, whereasw2(x) is
known as the axion field.

This system is governed by two sets of equations.

]mF̃mn50 ~A2!

and

]m@w1Fmn1w2F̃mn#50. ~A3!

If we expressFmn in the usual way as

Fmn5]mAn2]nAm , ~A4!

then Eq.~A2! is an identity, while Eq.~A3! is a dynamical
equation obtained by varying the Lagrangian with respec
Am .

We define

G̃mn5w1Fmn1w2F̃mn . ~A5!

In Minkowski space, as is easily shown, the dual of a dua
the negative of the original tensor. Therefore,

Gmn52w1F̃mn1w2Fmn . ~A6!

We can invert these relationships to obtainF andF̃ in terms
of G andG̃, and then substitute them intoL:
J.

J.

et

J.

er

dt

-

to

is

L52
1

4 S 1

w1
21w2

2D $2w1GmnGmn1w2GmnG̃mn%. ~A7!

If we set

Gmn5]mBn2]nBm , ~A8!

and varyL with respect toBm , we obtain

]mF 2w1

w1
21w2

2 Gmn1
w2

w1
21w2

2 G̃mnG50, ~A9!

and also

]mG̃mn50 ~A10!

as an identity. It is straightforward algebra to show that E
~A9! is the same as Eq.~A2!, and Eq.~A10! is, by definition,
the same as Eq.~A3!. Thus the physical content of the La
grangian~A7! is the same as Eq.~A1!, but the dynamical
equation in one case is an identity in the other case, and
versa. We see that if we can solve a system with sour
(w1 ,w2), then by duality we automatically obtain a solutio
with sources@2w1 /(w1

21w2
2),w2 /(w1

21w2
2)#. It is not clear,

however, whether practical use can be made of this obse
tion in the case of sonoluminescence.
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