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In single-bubble sonoluminescence, a bubble trapped by a sound wave in a flask of liquid is forced to expand
and contract; exactly once per cycle, the bubble emits a very ske&bp p9 pulse of visible light. This is a
robust phenomenon observable to the naked eye, yet the mechanism whereby the light is produced is not well
understood. One model that has been proposed is that the light is “vacuum radiation” generated by the
coupling of the electromagnetic fields to the surface of the bubble. In this paper, we simulate vacuum radiation
by solving Maxwell's equations with an additional term that couples the field to the bubble’s motion. We show
that, in the static case originally considered by CasifRiroc. K. Ned. Akad. Nel51, 783 (1948], we
reproduce Casimir’s result. In a simple purely time-dependent example, we find that an instability occurs and
the pulse of radiation grows exponentially. In the more realistic case of spherically symmetric bubble motion,
we again find exponential growth in the context of a small-radius approximd8di063-651X99)08803-0

PACS numbes): 78.60.Mq, 03.50-z, 03.70+k, 03.50.De

[. INTRODUCTION the water, leaving a rarefied bubble filled with noble s
Experiments done with bubbles filled with various noble
Single-bubble sonoluminescend is a mysterious phe- gases confirm that they produce sonoluminescence effi-
nomenon. A small bubble of gas, usually air, is trapped at théiently. _
center of a flask of liquid, usually water, by the application ~ There is much more to the phenomenology of sonolumi-
of an intense acoustic field. The frequency of the field ise€scence, as described in a number of recent reviélvs
typically 25 or 30 kHz, and, once per cycle, driven by theSonqumlnes_cence is a complex phenom(_anon, mvolvmg as it
sound field, the bubble undergoes expansion and then rapﬁ;PeS the motion of the bubble,_ the dynamics of the gas inside
contraction. If the parameters are rigi#] (here “param- t.he bubble, gnd the mgcha_nlsm tha'; produces the flash of
eters” refers to such things as the intensity of the soundight. .Our main concern in this work will be the last of thgse.
field, the concentration of the gas, the chemical compositior] N€ literature contains two classes of models to explain the
of the gas, or the temperature of the wative bubble will flash of light. One mvolv'es the gas inside the bubble in an
emit a very narrow pulse of light during the contraction essential \_Na)[10]. Ther_e is no_doubt that the gas undergoes
phase of the cycle. The sound wave, with a time scale of ten€oMpression and heating during the contraction phase of the
of microseconds, produces a contraction of the bubble megUPble’s motion, and this type of explanation relies on either
sured in tens of nanoseconds, which in turn somehow genef€rmal radiation, or else bremmstrahlung, to produce the
ates a pulse of visible light whose duration has recently beelight. . .
measured to be tens of picosecori@s Furthermore, even _1Nhe second type of explanation, on which we shall focus,
though the motion of the bubble is quite violent, if the pa-iS that the observed light is due to “vacuum radiatiori’1—
rameters are right it can be remarkably stable, repeating itseff®: Which is a dynamical counterpart to the well-known
over millions of cycles, with the flash of light appearing at Casimir effect. In this view, given a particular motion of the
the same point in the cycle each tiff4. bubble,
Other aspects of the phenomenology of sonoluminescence r=R(t) 1)
are also worthy of note. For example, the spectrum of emit-
ted light is only partially known, because the water absorbgherer is the radial coordinate that describes the bubble’s
all wavelengths shorter than about 180 fBh The part that surface, andR(t) is a prescribed function of time; we assume
is observed looks like the tail of a rising distribution, and a spherical bubble centered at the origin for simpligithe
attempts to fit it to a thermal spectrum have led to the specuradiation would take place even if the bubble were com-
lation that the emitting region is very hot, certainly in excesspletely evacuated. The role of the gas, and in particular the
of 25000 K, and perhaps even as high as a million degreespecial role that seems to be played by the noble gases, is
at which point nuclear fusion might be expected to be sigimerely to modulate the motion of the bubble, i.e., to give rise
nificant[6]. to a specificR(t). It is then the motion of the boundary that
Another peculiarity is the fact that, whereas air-filled directly gives rise to the radiation.
bubbles work well as a vehicle for sonoluminescence, To explore this idea, our approach will be to take as given
bubbles filled with either oxygen or nitrogen, or indeed with all of the physics associated with the motion of the bubble
a suitable mixture of these two gases, do [dt The small and the dynamics of the gas, and to extract therefrom the
noble-gas component of air is essential for significantsingle function R(t) which represents the experimentally
sonoluminescence to take place. This agrees with the suggeseasured bubble motion. Our next task is to construct a
tion that, during the first second or so of the bubble’s oscil-model in which the electromagnetic field is coupled to the
lation, the oxygen and nitrogen are ionized and absorbed blgubble surface at=R(t).
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One approach would be to attempt to derive this couplingso up to a surface terr can be written
from an examination of the dielectric properties of water; in L ) oo
practice, this would mean simply endowing the water with a L=—3[FuF*"=2(d,1)e*P7A,d,A,]. (4)

dielectric constang, and letting Hence by choosing

f(x)=1o0[9(x)], ®

Considerable attention in the literature has been devoteg, optaing f=f,9,98(g), o the second term ifi repre-
" " '

to the case OR(t) =const, which, although it obviously ne- gons the coupling of the electromagnetic field to the surface
glects the dynamical mechanism that turns Casimir ener%iven byg(x)=0. (f, is a dimensionless constanEor the

into real photons, is supposed to provide an order of magnizyce of the sonoluminescing bubble, we would choose
tude estimate of the energy available, which can then bﬁ()? t)=r—R(t).
compared to the energy that is produced in sonolumines- 'Ilhe equations of motion that follow from are
cence. The question of whether the Casimir energy is suffi-
cient in this respect has become a rather controversial one 0, [F*+F(x)E*"]=0 (6)
[18]. Attempts to treat this problem dynamically have led to K’ ’
interesting results, but have not fully resolved the issugy sinces F =0 identically
[12,13,14,19 ’ womy ’

In this work, we shall choose a coupling that is not deriv- 9, Fr7+(a,f)Er=0. 7
able(at least by usfrom a direct consideration of the under- K K
lying physics. Rather, the interaction is chosen both for itsf e defineE andB in the usual way, we obtain the modi-
simplicity, and because it naturally leads to a coupling localfied Maxwell equations
ized on the boundary=R(t). In addition, as we shall show

e(X,t)=€0(r—R(t))+ O(R(t)—r).

below, when one considers the case of two static parallel V.-E+Vf.-B=0, (8)
plates (Casimir's original problem one recovers precisely

the original Casimir energy, and is therefore encouraged to VXB—E—fB—VfXE=0 (9)
hope that the model may be a valid representation of the

dynamical situation as well. together withV-B=0 andV X E+B=0. With choice(5),

In Sec. Il we shall introduce the model, and derive the
boundary conditions o& andB that it implies. In Sec. IIl,
we look at two instructive cases that are not directly relate
to sonoluminescence: the case of static, parallel plates me

have f=f,n°s(g) and §f=f0ﬁ5(g), where n,,
d=(gﬁg) is the 4-normal to the surface. To see what these
gquations entail, we write

tioned above, and the case of a strictly time-dependent > - =
source, with no spatial dependence. In this latter case, we E=E,0(9) T E-6(~9), (109
shall discover the existence of unstable modes that can lead - - -

B=B16(9) +B26(—9), (10b)

to production of radiation at unexpectedly large rates.
In Sec. IV, we tackle the case of greatest interest, th%md substituting into Eq¥8) and (9), we find that the pair

collapsing bubble. Even classically, we are unable to solve .~ - i .

the equations exactly, but we develop an approximatioriE1,B1) satisfy the free Maxwell equations f@g>0, and

scheme that relies on the fact that the radius of the bubble ikewise (E,,B,) satisfy them forg<0. At g=0, we have

small, in the sense th&(t)<cT, whereT is a time charac- the boundary conditions

teristic of the width of the sonoluminescent pulse. In this

approximation we find the same sort of unstable modes that n-(E;—Ey) +fofi-B=0, (11

existed in the purely time-dependent case. Section V is de- L L R R

voted to conclusions, and we have also included an appendix AX(B;—B,) —ng(E;—E,)—fo(ngB+AXE)=0, (12

in which further properties of th&F interaction term are

discussed. fi-(B;—B,)=0, (13
Il. MODEL AX (E;—E,)+no(B;—B,)=0. (14)
We consider the following Lagrange densjt6]: Notice that the second pair of equatiofis3) and (14) re-
. . - moves the ambiguity as to which valuesB®andE to use in
L=—4[F L F+f0F L, F#7]. 2 the terms proportional té, in the first pair of equationé&l1)
. . and(12).
HereF,, has its usual meaning,,=dJ,A,—d,A,, Where (12
A, is the four-vector electromagnetic potential, aﬁg,, Ill. SPECIAL CASES
=(112)€,,,,F"’, wheree,,,,, is the totally antisymmetric '
symbol on four indices, and®?=1. A. Parallel plates
As is well known,F ,,F,, is a total divergence Before dealing with the time-dependent case, let us ex-

5 plore the physical significance of our model by revisiting the
FuFr'=a,[2e"""7A,d,A,], (3)  case originally considered by Casinjit7], i.e., two infinite
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parallel planes separated by a distarceWe take g(X) The equations of motion in this case are of course just the
=z(z—a). The planes divide space into three regioms, free Maxwell equations fot<O andt>T, whereas for O
<0, 0<z<a andz>a, and in each region we can choose a<t<T, one of the Maxwell equations is modified:
plane-wave solution to Maxwell's equations,

S VxB-E=gB. (24)
E:ef|wt[é>e|k-x+é>/elk -X], (15)
One can now study a plane-wave solution, propagating, say,
wherek=(k; ,ky,ks) andk’ = (k;,k,,—ks) and along thez axis. Fort<0 we write
B=e bk ¥+ 5el ¥, (16) B=(a%+bg)e ",
(25)
We need bottk andk’ because the boundary conditions will E=(bx—ay)e kz-V,
mix them.
Maxwell's equations imply that with k?=w?. At t=0, this will be matched to a solution of
the form
kXb=—wé, kx&=wb 17

B=ee “(ax+BY)+e M (yx+ 59)],
and (26)
E=ee *(Bx—aP)+e (5% )],
K'xb'=—wé, k'X&=ob, (19
where, because of the modification to Maxwell's equations,
in each of the three regions, which in turn imply that  one has?=0Q2% =[k(k=g)].
—R2=Kk'2. Corresponding to each of these solutions is a particular
It is now a matter of implementing the boundary condi- polarizationC.. =1#V2[X*i§]. When matched to the<0
tions atz=0 and atz=a. After some algebra, it is not hard solution, the expression fd&, 0<t<T, becomes
to show that the content of these conditions reduces to

0 biible0 19 —ikag k+Q+) a+ibAC Lot
z=0: +b;=0, e =|—m—|———C, e "
3 3 ( ) 29+ ‘/2 +
z=a: bse'*s¥+bie =0 (20) (k=0 a+ibé i
. 20, | v2 T
(here b; means the third component of in the region 0 )
<z<a, and similarly forbz) from which it follows that k+Q_\a-ib & et
20 vi oo
ksza=nmw, n=0,x1,=2,... (21 )
k—Q_\a—-ib,. .
o L - C_e'®-t (27)
This is exactly the same spectrum used by Casimir in his 20 _ o) - '

original paper, and therefore the Casimir eneéfy will be

the same as his result with a similar expression foE.

One can extend this analysis by matching this solution to

(22)  asuitable expression fd& andB in the regiont>T, where
of coursew?=k? again. But we shall not need this extension
in what follows.
The feature most worthy of note is thébr g>0) the
frequency() _ becomes imaginary whda<g. (If g<<0, then

Q. becomes imaginaryHenceE andB grow exponentially
Armed with the knowledge that our model reproduces thewith time over the interval 8.t<T. We shall see below that,
static Casimir energy, we now proceed to another simplat least in a certain approximation, this feature persists in the

example, which is very different physically: we takéx,t) case of a spherically oscillating bubble.
to depend only ort: To quantize this model, we can exprd&ssndB in terms
f(x,t)=0, t=0 of a vector potentiaﬁ, and endow the Fourier coefficients of
A with the appropriate commutation relations. Effectively
this means that the coefficierdsandb in the above expres-
=gT, t=T. (23 sions become quantum operators. We must also generalize
our solution to the case of a plane wave propagating in an
Sincef is not a step function, there is no bubble in this casegrpitrary direction, but this is easily done since thexis
Rather, the source is turned on everywhere at onde=8t  ysed above was in no way special. It is of interest to compute
and is turned off again at=T (f = const, is without physical — the rate of energy production per unit volume by the external
consequence, becausg,F*“” is a total divergende source. We do this by forming the Hamiltonian density

oE a2

L 7203’
whereL? is the area of one of the plates.

B. Time dependent source

=gt, 0O<t<T
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E-E+B-B), 28 L, 2 l+D
( ) 9 e=¢' =T+ —2 =0, (33

N|-

H=

and taking the vacuum expectation value of its time deriva-

tive. H is normal ordered, so that0|#|0)=0 for t<O. where g is any of thee's or b’'s, and furthermore that
Since the expressions are quite lengthy, we simplify matters .

by retaining only those pieces which grow exponentially. e;=ib, and by=—ie;. (34)

After some calculation, we then find ) . .
In these equations, a prime #dr, and an overdot ig/Jt.

g9’ So if we cast the boundary conditions entirely in term$of
1672 ande,, we can recovee; andb; from Eq. (34).
5/2 In fact it is not hard to express the boundary conditions in

1 X o N R )

2gtyx(1—x) terms ofe, andb,. We expancE andB as in Eqs(31) and
——3€ dx, (29 2" :
fo 1-x)* 29 (32 separately inside and outside the bubble, and we let
Ao=@ou— ¢in, Where once agaip is any of thee's or b's.

where the notation exp on the matrix element means th@hen we find, at =R(t),
exponentially growing piece. A simple stationary-phase esti-

d
S (0[O} (1) A(T—1)

mate of the integral gives Ab3=0, (35)
d g° Aey=—foby, (36)
a<0|7_l|0>exp2 o) O(T—1t) 6472 ed", (30) .

Mbp= TR o 3

We can try to connect this to sonoluminescefdespite the 2_1_ R2 = FetRe (37

fact that there is no bubbldy choosingT=10 'sec(the
duration of a typical pulseand 1§=2X10 "m (the cutoff  gnd
on the observed spectrymWe then findgT=1.6x 10%,

which, needless to say, produces a huge number when in- ) —fo [Rb, . . |
serted into the exponent in E(B0). Agy=—" ?+b2+ Rb, |. (39)
At this point, we can simply argue that our model is too 1-R

ne can show that the expressions on the right-hand side of
ese equations all have zero discontinuityr atR(t), so

ere is no ambiguity as to which values to insert.

For simplicity, we choose to analyze the casel. Then

the most general solutions to E@3), for b, ande,, are

far removed from the phenomenology of sonoluminscence t
be expected to give reasonable results. Later, however, w?%
shall have to deal with this question in the context of a moreth
realistic model, to which we now turn.

IV. COLLAPSING BUBBLE

We takef(x)=fy,60(r —R(t)). Our strategy will be to at- bgut:i
tempt to solve the classical problem, looking for the kind of or
exponential behavior in time that we found in the previous

1. .
;(ﬁ(t+r)—ﬂ(t—r))},

e>§ample. If this is indeed found, then, reasoning by analogy bg‘:i[l(ﬁ(tﬂ)—ﬂ(t—r))},
with the previous example, we will argue that, when quan- ar
tized, the model will produce an exponentially growing pulse (39
of vacuum radiation over some period of time. out 1 .
Because of the spherical symmetry, it is appropriate to € :E{F(Y(Hr)_y(t_r)) '

expandE andB in terms of vector spherical harmonics. Dif-
ferent values of and m will not couple to each other. We n 911
write &= |7 ((tFr)—y(t=r))

- - , - [(1+1) Here thepB's and v's are arbitrary functions of the indicated
E=eilYimt(rez+e)VYin+ —z—e€rYim (3 arguments. In writing these equations, we have imposed the
requirement thab, ande, be regular at =0. The functions
and B and% determine the waves propagating inward from in-
finity, and should be taken as initial data. In principle, it
- - , R [(1+1) should be possible to use the boundary conditigfss.
B=b1LYin+(rbo+02) VYint+ —72—bofYim. (32 (35-(38)] to determine the inside solution, specified By
and y, and the outgoing waves specified ﬁ’yand y. The
Here L= (1/)xV, and thee's and b's are functions ofr  effect we are looking for is to see whether nonexponentially
andt; we cannot separate variables any further because thgrowing incoming datg3 and ¥y can generate exponential
boundary conditions will mix andt. growth in the outgoing solutio;ﬁ? and?.

These forms automatically satisfy-E=V-B=0. The Unfortunately, when we substitute forn{89) into the
rest of Maxwell's equations imply that boundary conditions, we find rather complicated functional
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(44)

difference equations that we do not know how to solve. In- _ foRR(Pi) (P1> (7"
= B///)’

stead we rely on an approximation that is based on the fol-

lowing observation. Phenomenologically, the smallest time 3
scale we are interested in is the width of the sonoluminescent ) )y —1 i
pulse,At,,=10"sec. The largest length scale we are in-WhereM is the matrix @ (~23y,)- The eigenvalues dvl
terested in is the maximum size of the bubbR,, are

=10"“4m. But, in units withc=1,

P2 P2

A= 3[=f2+4- 1] (45)
Rmex _ 17 my ! 40
Atpin m/sec= 30 (40) Note that\ . >0, A _<O0. Let 6 be the orthogonal matrix
(this is actually a generous overestimate, since sonolumines- 10k, —k_
cence occurs when the bubble radius is at least an order of 0= % k. k. | (46)

magnitude smaller thaR,,,,). Thus it might make sense to
regardR(t) as a small parameter, and to expand our equa- _ 12 . o
tions accordingly. We do this as follows: in the expressionsVhere k==[1=fo/fg+4]"% Then, setting ') = 6(7%),
for b, ande, [Eq. (39)] we replace the argumentsr by  our equation becomes

t*er, where € is a bookkeeping parameter in which we

perform a systematic expansion. At the end, weeset. —foRR( o} Niog K1
To obtain a consistent expansion, we not only expand the 3 o) =<)\02 +(K2 , (47)
arguments of the functions, we must also expand the func-
tions themselves: where ()= 0(%’,’,’,). Thus we have to solve
o(t)=@o(t) + €@y (t) + €2 pa(t) + ..., (41)
. —foRR
whereg stands for any of the unknowrg %, B, andy. The 3 o'=No+k, (48
input functions@ and¥ are regarded as known, and so are
not expanded. The advantage of this expansion procedure j$hose solution is
that we thereby obtain relations among functions all of which
are evaluated at the same argumeetienceforth we denote ¢ 3\
d/dt by a prime. o(t)y=exg — | dt/'——
To obtain nontrivial results, we must retain terms up to F{ o fygRR
order 2. For convenience, we introduce the notatjoy{t) ¢ ) 3\ 3k
= Bo () andp,(t)= v (t). We find — | dt/ exp[ ' dt"—_] _) +o(tg) |-
- ~ to to foRR foRR
Bo=B, Yo=Y (49)
B1=B2=Y1=¥»=0, There are two such solutions, one for. and one fork _ .
(42)  Generally, the exponential behavior that is manifest on the
1233: 2R3 p,— B"], right hand side of Eq(49) will cancel in the first term, but
will survive in the term proportional to(ty). Because in the
Y3=2Rpo— 7" —fop1] region of interest we havi@ R<0, it will be \ .. that gives the
exponentially growing behavidfor f,>0).
and How do we interpret this result? First, we must recognize

that the approximation we have made is potentially very dan-
gerous, because the highest derivative in &®) is multi-
plied by a factor—foRR/3, which we expect to be quite
(43) small, and indeed vyh?ch we expect to go to zerolfdarge.
1 f, _ _ [Here we are restricting ourselves to only one cycle of the
p2=%"— —( : )[(1—3R2)p1+ RRp1]. bubble’s motion, so we takR(t)—const asjt| —%».] As a
3 R? consequence, it appears from the solution that the exponen-
R tial behavior becomes more pronounced the sm&lRrbe-
The functions whose behavior we want to study Ageand  comes, whereas we know from the original equatids)
Y3, whA|ch give the first nontrivial corrections to the outgoing ot for RR strictly zero the solution is just=— (1/\) &,
wavesf andy. Our strategy will be to solve E¢43) for p1  which exhibits no exponential behavior at all.

andp,, and then evaluat@, and 3 from Eq. (42). If we Our response to this is to imagine that f6gRR| below
make the further approximatidR?< 1, which must surely be some threshold value, it is indeed negligible, and therefore
true for any realistic bubble motion, we can drop tRé  o=—(1/\) . At some timety,|foRR| crosses the threshold,
terms on the right hand side of E@t3), which can then be and solution(49) kicks in. We therefore fix the arbitrary
rewritten as constanto(ty) to be —(1/A) x(tg). As we have already ob-

Hm 1 fo o/
p1=B8"—— —|[2p2+RRp2],
311-R?




3006 ALAN CHODOS AND SARAH GROFF PRE 59

served, for one of the two choices ®f o will be an expo- did for the simpler purely time-dependent case. We believe

nentially growing functior{except for the unlikely possibil- that any exponential behavior in the classical system will

ity that x(tg) =0]. persist in its quantum counterpart, but having the explicit
The good news is that, within the context of our approxi-expression for quantum vacuum radiation would allow one

mation, we have found the exponential behavior that we aréo compare the details of the photon spectrum with experi-

looking for. The bad news is that, just as in the earlier, sim-iment. It would also be useful, for numerical work, to have a

pler example, we have an embarrassment of riches. Theigood analytical approximation t&(t).

appears to be no mechanism within the model for turning the Ultimately, electromagnetic radiation can be produced

exponential behavior off—we have already fixed the one fre@nly by charges in motion. In the case of sonoluminescence,

parametero(tg). Let us assume that there is a dissipativewhether those charges effectively reside at the boundary of

mechanism, having to do with the properties of the gas insidéhe bubble, as we contend in this paper, or within the gas

the bubble or the liquid outside it, that we should add to ourinside the bubble, is a question that still awaits definitive

model. This will abort the vacuum radiation after some char+esolution.

acteristic time. Because the exponential growth produces so

much radiation, we must assume that the abortion takes place ACKNOWLEDGMENTS
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It has been argued in the literature that vacuum radiation ~
cannot be the source of sonoluminescence because the static APPENDIX: MORE ABOUT FF

Casimir energy is so small. Wlth_out entering into the_ contro- In this appendix we add a few remarks about the proper-
versy over how large the static Casimir energy is for a

spherical bubbld18], we believe that, as illustrated by our ties of FF. Thef(xX)FF intergction analyzed in_the text was
model (which, after all, correctly reproduces the static ca-chosen as the most convenient form for coupling the electro-
simir energy in the case of parallel plaesere are two magnetic field to the bubble boundary. Whether it correctly
additional factors that ought to be taken into acco(®tThe captures the essen_tial physiqs of this coupling is a matter that
Casimir effect arises essentially from the coupling of theWill require further Inygstlgflt!oh. L
electromagnetic field to a boundary. When that boundary is Another way of writingFF is just 2E-B. It is, apart from
moving, the field is coupled to a time-dependent sourcethe familiarFMVF’”=1/2(l§2—|§2), the only Lorentz invari-
wh|ch in and of itself Ieads_ to the pro_ducnon of ener@).If ant that can be constructed frof and B by algebraic
this time-dependent coupling gives rise to unstable modes, as
it does in our model, then an unexpectedly large amount o
energy can be produced. ) )

The present work raises a number of issues for furtheFheory such as electrodynamics, because, as noted IBEQ.

investigation. Perhaps most important is tightening up theIt is a total divergence. In a non-Abelian theagsuch as

approximate treatment we have given for the classical soluqu"’mt.u m _chrom_odynamlcs or ';he electroweak _th)acbkys
term is still a divergence, but it nevertheless gives rise to

tions in the case of the collapsing bubble. It would be pref- ; ; o
. .~ nonperturbative physical effects because of the nontrivial to-
erable to have a method of analysis that would conclusivel ; ; L
ological structures, called instantons, that exist in such

demonstrate whether the period of exponential growth exist f
and whether the model contains not only a mechanism fomeor'es' . .
turning on the pulse but also for turning it off. Failing that, it The anoma!ous dlveirgen(?e of th}cj(l).axml vector CL_'r'
will probably be necessary to include additional physics hay/€nt is proportional td=F. This term is directly responsible
ing to do with the kind of dissipation mechanism discussed©r the decay of ther® meson into twoy rays, which is its
above, capable of damping the vacuum radiation to a leveflominant decay mode. _
compatible with what is seen experimentally. If this is the In string theory, because of a property callgdiuality
case, then the shape of the sonoluminescent pulse shodi@0.21, two seemingly different theories can in fact be
exhibit a very rapid rise followed by a much slower decay. equwalenp Thls can be very useful because of_ten one of the

Within the context of the expansion employed in this pa-tWo theories is stror_1g|y couplegnd therefore intractable
per, as might be expected one finds that the higher orders i{hereas the other is weakly coupled. As it turns out, the
€ become progressively more complicated. We have exanSystem we have been studying in connection with sonolumi-
ined the next nontrivial term, which i€, and we have veri- nescence exhibits a simple form ®tluality. To see this, itis
fied that it does not qualitatively change the exponential betseful to consider a slightly more general Lagrangian:
havior found in ordere®. We have not checked, however,
that thee® contribution is numerically small compared to the
€ contribution.

It would also be useful to quantize the electromagnetic
field in the presence of the collapsing bubble, much as wén the text we hadp;=1 and ¢,=f(x). In string theory,

eans. A term in the Lagrangian of the foﬁﬁwrzf‘”, with
# constant, has no physical consequence in an Abelian gauge

L==3[e1(0F L, F*"+ @a(X)F,,F*]. (AL
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¢1(X) would be related to the dilaton, whereas(x) is 1 1 ~
known as the axion field. L==z\ 272 {=016,,G""+ ¢5G,,,G*"}. (A7)
This system is governed by two sets of equations. P1m P2

a#T:W=0 (A2) If we set

and G,uv:a/LBv_&vB,ul (A8)
0, @ FA+ 0, FA"]=0. (A3) and varyL with respect toB,,, we obtain
If we expressF,,, in the usual way as 2, ;@12 o 2<P2 2@” o, (A9)
F —9 A—dA (Ad) P1T @2 P11 @2
nv y7 2 vl

then Eq.(A2) is an identity, while Eq(A3) is a dynamical and also
equation obtained by varying the Lagrangian with respect to ~
A d,G*"=0 (A10)

MWe define
as an identity. It is straightforward algebra to show that Eq.
éM: @1F 0t <P2'~:,w- (A5) (A9) is the same as E@A2), and Eq.(A10) is, by definition,
the same as EqA3). Thus the physical content of the La-
In Minkowski space, as is easily shown, the dual of a dual igrangian(A7) is the same as EqA1), but the dynamical

the negative of the original tensor. Therefore, equation in one case is an identity in the other case, and vice
_ versa. We see that if we can solve a system with sources
Guv=—¢1Fut @aF 0. (AB)  (¢1,¢,), then by duality we automatically obtain a solution

, _ , - with source§ — @1 /(@5 + @3), @2/ (95 + ¢3)]. Itis not clear,
We can invert these relationships to obt&imndF in terms  however, whether practical use can be made of this observa-
of G andG, and then substitute them inix tion in the case of sonoluminescence.
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